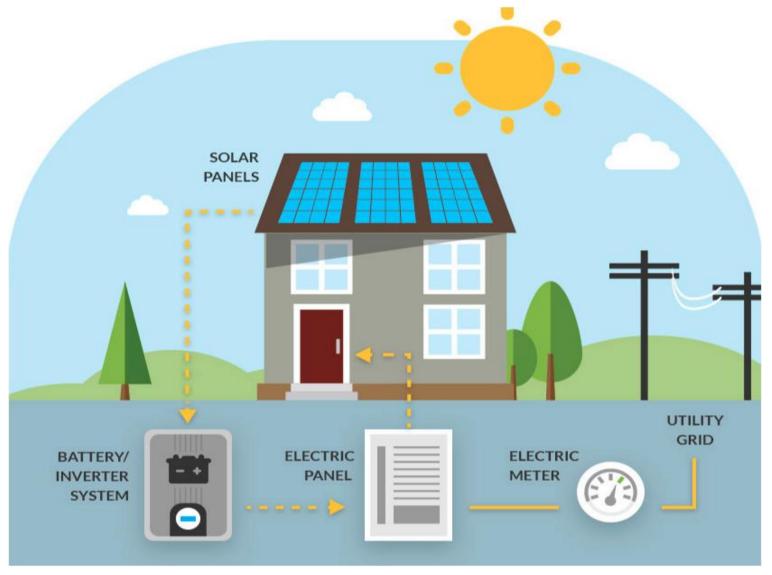
# Bright Future Ahead Renewable Energy on Schools and in Classrooms

May 19, 2021



## Presentation Highlights

- Site Assessments
- Analyzing Utility Data
- Incentives
- Monetizing the Value of Solar
- Economics and Finance
- Solar in the Classroom
- Questions and Answers


### Welcome to the Solar Coaster!

- Is there **interest** in solar and/or energy storage?
- What *motivates action* in your district?
- Do you have a *plan*?
- Do you have the *resources*?
- Do you have a *timeline*?





### Solar PV and Energy Storage – How it Works





"Photovoltaic" means conversion of sunlight into electricity

## Assessing Sites To Optimize Energy Production Value

#### Solar PV Design Options

| Application    | Cost   | Production | Economic Value |  |
|----------------|--------|------------|----------------|--|
| Ground Mount   | \$     | High       | Very High      |  |
| Rooftop        | \$     | Average    | High           |  |
| Carport        | \$\$   | Average    | Average        |  |
| Parking Garage | \$\$\$ | Average    | Poor           |  |

#### Questions to Ask?

- How much energy (kWh) is consumed each year on-site
- What site constraints must be managed to succeed
- Do my utility provider rates support a high value of solar









## Understanding the Utility Environment

#### **Net Metering Policies**

- Influence: how energy production is valued on utility invoice
- *Higher value:* credited at "retail" rate
- Lower value: valued at "avoided cost" rates

#### Energy Consumption Information (Utility Invoice History)

- *Compile:* **minimum of 12-months** of concurrent utility invoices
- Consider: are the bills from an average year (non-COVID)
- *Review:* rate tariffs to determine value of solar (\$/kWh)

#### **Interconnection Process**

- Understand: each utility has its own interconnection process
- Engage: developers and utility staff to learn about the process
- Plan: align resources to avoid delays and mitigate (\$\$\$) risks





## Incentives: Support Project Economics

#### Utility

• Check with local utility provider about available incentives

#### Federal, State and Municipal

- Grants and other funding matches
- Sales Tax Exemption (developer pass-through savings)
- Pass through ITC and MARCS depreciation (third-party financed projects ONLY)

#### Non-Profit

- Focus on Energy Prescriptive Renewable Energy Incentive
- MREA / Couillard Foundation Solar on Schools Program





Securing incentives is a time sensitive process often with limited funding.

## Monetizing the Value of Solar

#### **Reduce Energy Consumption**

 Energy production offset amount purchased from utility

#### **Improve Operational Cashflow**

- kWh produced by solar reduces amount purchased
- Lower monthly utility costs

#### Hedge Against Future Energy Costs

 Investing in solar energy places a hedge on escalating energy costs

| Description                      | Energy Use<br>(kWh) |          | Max<br>Demand<br>(kW) | Charges |           |
|----------------------------------|---------------------|----------|-----------------------|---------|-----------|
| Annual                           | On Peak             | Off Peak | Max Peak              | Other   | Total     |
| Current                          | 745,362             | 353,914  | 3,862                 | \$2,274 | \$115,849 |
| With Solar                       | 580,482             | 289,846  | 3,667                 | \$2,274 | \$97,447  |
| Energy<br>Production<br>(Offset) | 164,880             | 64,068   | 195                   | \$ -    | \$18,402  |



### **Project Economics and Financing**

#### **Project Economics**

- System Size (kW): how large is the system
- Annual Energy Production (kWh): how much energy is produced per year
- Value of Solar (\$/kWh): what is the monetized value of the solar production
- Total System Costs (\$/watt): design, development, and construction costs
- **Operations & Maintenance (\$/kW/Yr):** costs to maintain the system over time
- **Return on Investment:** good projects will return greater than 100%
- Net Present Value: investment in solar often generates strong NPV

#### **Financing Options**

- Capital/Operating Funds: capital improvement or allocated operating funds
- **Bonding:** low-cost capital can be used to hedge escalating future energy costs
- Lease Purchase Financing: use future energy savings to finance investment in solar using operating funds
- Third-Party Financing: require no-upfront \$. Pass through benefit of solar ITC



### Bring Solar into the Classroom

- Data Acquisition Systems: collect, record, & trend real-time and historical data
- Data Accessibility: url link connects anyone, anywhere to data set
- Curriculum Opportunities: tailor curriculum by grade level and class emphasis
- Kiosk: display information in high-traffic area to communicate value and action





## Bright Future Ahead Renewable Energy on Schools and in Classrooms

## Is your school district ready to go solar?

## McKinstry Renewable Development Team

Eric Rehm Development Director | Renewable Energy McKinstry Consulting | Construction | Energy | Facility Services www.mckinstry.com c: 612-845-3467 e: ericre@mckinstry.com Sean Currie Project Development Manager McKinstry Consulting | Construction | Energy | Facility Services www.mckinstry.com c: 608-513-2788 e: seancu@mckinstry.com

