WASBO Summer Midwest Facility Masters Conference

Understanding HVAC

Presenters:

Andrew Daniels

Director of Buildings & Grounds Safety Coordinator East Troy Community School District **Dave Bavisotto** Business Development Manager Illingworth-Kilgust Mechanical

June 11, 2021 10:25am – 11:15am

Common HVAC Systems:

- Rooftop Units, AHUs (Packaged Units)
- Heat Pumps (Air & Water Source)
- Boilers (Hot Water & Steam)
- Chillers (Air Cooled, Water Cooled, Glycol Cooled)
- Cooling Towers
- Heaters (Gas fired, Electric, Hot Water, Infra-Red etc.)
- Fans and Ventilation

Most commercial buildings have Packaged Rooftop Units

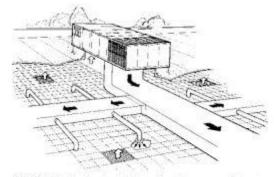
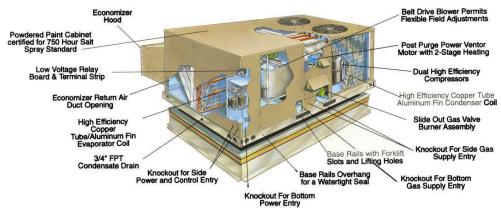
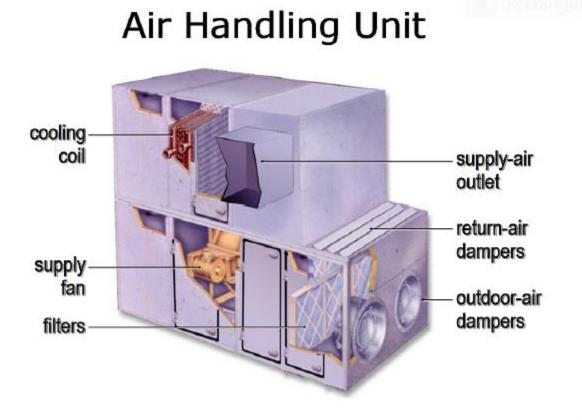
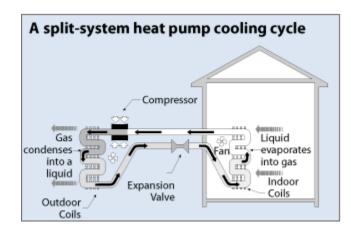
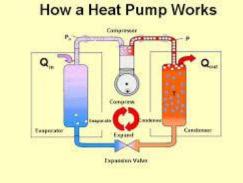




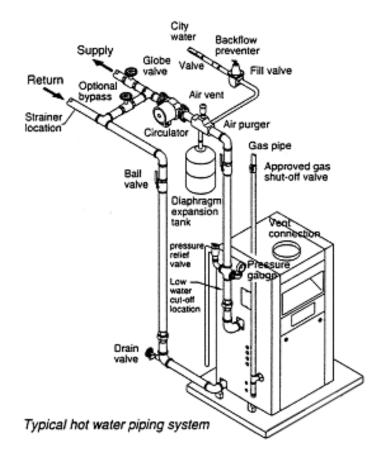
FIGURE 5.13 Typical rooftop installation of the single-zone system. (Lenexy

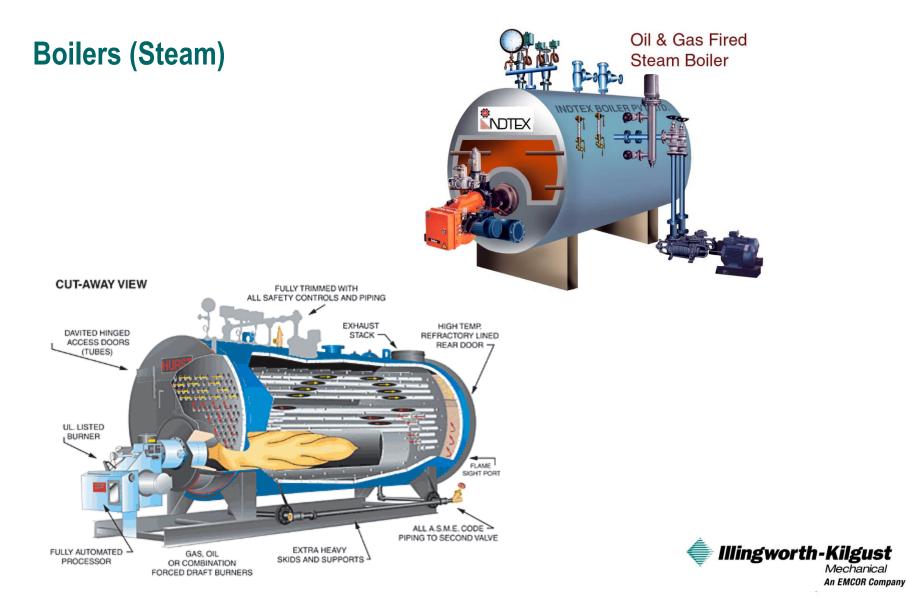


Just as the compressor is the workhorse of an HVACR refrigeration system, the **Air Handling Unit** (**AHU**) is the heart of an HVACR air distribution and ventilation system.

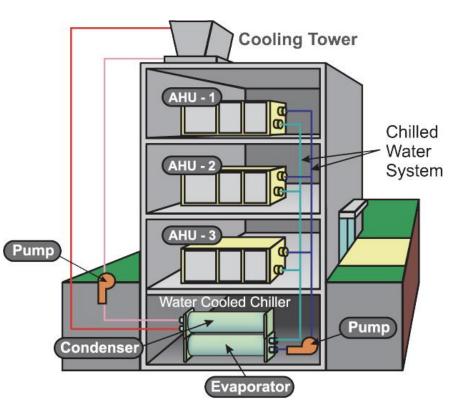

Illingworth-Kilgust Mechanical An EMCOR Company

Heat Pumps: Like a refrigerator working in reverse, a heat pump extracts the heat from the air (or water) and uses it for heating. The most common air-to-air heat pumps have the compressor and condenser in an outside unit. Then the refrigerant piping goes to an inside air handler unit which houses the expansion valve and the evaporator. System simplicity and low initial cost are the main benefit, while short life span (7 years is typical) and lack of control options are the principal drawbacks.


Water Source Heat Pumps: Called a one pipe system, a single pipe carries water through the building which the individual water source heat pumps use for their heat source. This system requires a boiler to raise the loop water temperature and a cooling tower to lower the loop water temperature. Each zone has a dedicated water source heat pump that is located inside the building. This system is extremely energy efficient during those times of the year. The main drawback is probably all the compressors located throughout the interior, both for noise and maintenance.



Boilers (Hot Water)

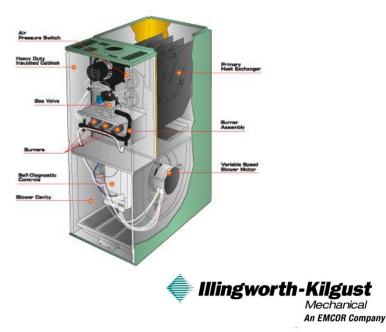


Chillers - Typically Air & Water Cooled



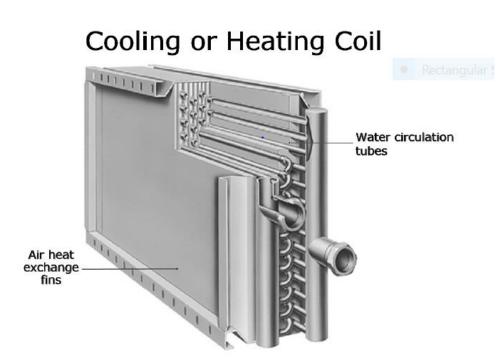
Chiller (Air Cooled) Air-cooled chillers are similar to water-cooled chillers. Both are refrigeration systems that are common in mechanical industries. They both use the same basic principles to generate cooling power, but they use different substances to cool the condensers. Air-cooled chillers do this with the use of air.

Cooling Towers: *From Wikipedia*: Is a heat rejection device which extracts <u>waste heat</u> to the <u>atmosphere</u> through the cooling of a water stream to a lower temperature.


Heaters

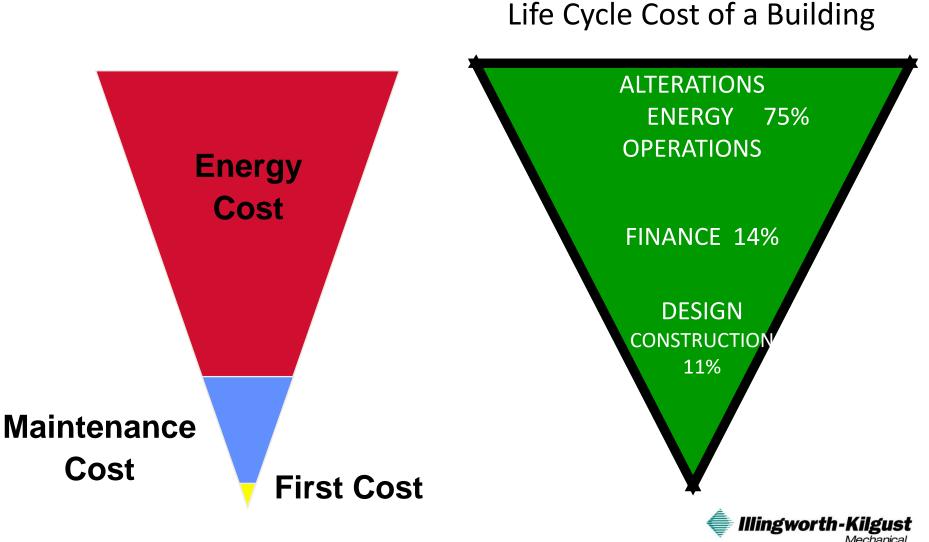
- Gas Fired Unit Heater
- **Forced Air Furnace**
- Infra-Red Heater

FURNACE GAS-HOT AIR


Mechanical

Fans and Ventilation: The use of fans to ventilate a space for cooling and/or expulsion of indoor pollutants can be done in many ways. From a simple toilet exhaust fan to huge wall fans interconnected with wall louvers used for summer cooling, there are many ways to ventilate.

Heating and cooling coils or elements are normally included in a centralized AHU to provide temperature control for the distributed supply air. Larger AHUs utilize heat exchanger coils that can circulate hot water or steam from a central boiler for heating, and chilled water from a central chiller system for cooling.


Air Filters

With Today's ever-increasing emphasis on indoor air quality, filtering has become an important factor in design and operation of the air distribution system.

Energy Systems Total Cost of Ownership

NIECNANICAI An EMCOR Company

Benefits Of Planned Maintenance

Energy Savings

The beginning of energy savings starts with proper maintenance.

Industry experience demonstrates the following savings from planned maintenance activities:

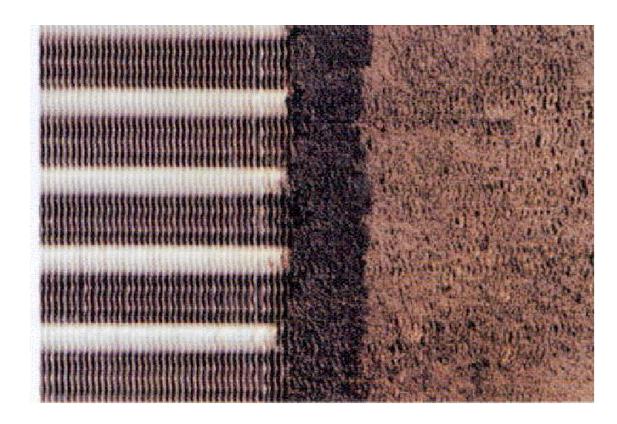
- 5% 15% Cleaning Coils
- 8% 10% Re-Alignment of Belts
- 10% 15% Replacing Dirty Filters
- **12% 15% Proper burner efficiency**
- 7% 9% Removing Soot from Burners
- 20% 25% Operating Sequence Adjustments

Source: DEPARTMENT of ENERGY

Regular Car Maintenance

- Tune-Ups
 - Avoids Hard Starting
- Replace Warn Equipment (Tires, Belts)
 - Prevents "Catastrophic"
 Failure
- Visit Your Mechanic When Something "Doesn't Sound Right"
 - Prevents Problem From Getting Worse
 - Prevents You From Being Stranded

- Check & Change the Oil
 - Protects The Engine
 - Check The Tire Pressure – Improves Performance & Mileage
 - Wash To Remove Road Salt
 - Prevents Rust
 - Safety & Emissions Inspection - Keeps Your Car "Legal"



What is the cost of Preventative Maintenance?

- Fact: Fuel costs continue to rise.
- Fact: Energy consumption is greatly increased with dirty coils and dirty filters.
- Fact: Proper preventative maintenance can provide energy savings more than the maintenance cost itself.
- Fact: Energy costs will only increase.
- Fact: The most basic maintenance procedures provide the best cost savings.

How Clean are your Coils and Filters?

Condenser Coils

- Dirty condenser coils can cost as much as <u>1/3 more</u> to operate than well maintained coils.
- Dirty coils provide inadequate heat transfer, causing higher discharge pressures, leading to increased electricity use and reduced capacity of the unit.
- Elevated pressure and temperature can lead to compressor lubricant breakdown, acid formation and ultimate equipment failure.

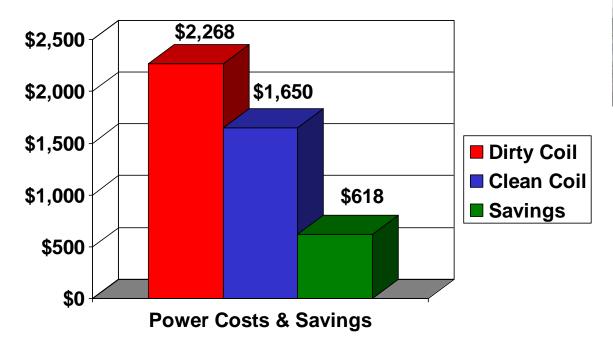
Condenser Coils

Progressive Effects of Scale On Air Cooled Condenser

Thickness of Scale in Inches	<u>% Loss of Heat Transfer</u>	
.000	0	
.006 Human Hair	16%	
.012 Index Card	20%	
.024	27%	
.036 Paper Clip	33%	

Particle Settling Rate

Distance 8 Feet


10 Microns – 6.8 Minutes 1 Micron – 58 Minutes 0.1 Micron – 37.7 Hours

Condenser Coils

A typical 10-ton air conditioning system operating for an average cooling season of 1,500 hours

If you multiply your total building tonnage by \$62, you can see the savings

V-Belts

- Proper tensioning of V-belts is the single most important factor necessary for long, efficient and acceptable belt operation.
- Too little tension results in slippage, causing rapid belt and sheave wear, and loss of productivity.
- Too much tension puts excessive stress on belts, bearings and shafts, reducing energy.

Energy Consumption

- Your HVAC equipment is responsible for 40% of your school's energy costs.
- 80% of that energy consumption is due to the system overcoming static pressure across the filter bank.
- Filters that provide good efficiency with low pressure drop are ideal.
- Well managed filter changes save energy.

ASHRAE Handbook Life Cycle Costs

Equipment Type	Years	Equipment Type	Years
AIR CONDITIONING UNITS		Coils	
Window Units	10	DX, Water, or Steam	20
Residential Units	15	Electric	15
Commercial Through the Wall	15	HEAT EXCHANGERS	
Computer Room Units	15	Shell-and-Tube	24
Water-Cooled Package	15	RECIPROCATING COMPRESSORS	20
HEAT PUMPS		PACKAGE CHILLERS	
Residential Air-to-Air	10	Reciprocating	
Commercial Air-to-Air	15	Centrifugal	23
Commercial Water-to-Air	19	Absorption	23
ROOFTOP AIR CONDITIONERS		Cooling Towers	
Single-zone	15	Galvanized Metal	20
Multizone	15	Wood	20
BOILERS, HOT WATER (STEAM)		Ceramic	34
Steel Water-Tube	24(30)	AIR-COOLED CONDENSERS	20
Steel Fire-Tube	25(25)	EVAPORATIVE CONDENSERS	20
Cast Iron	35(30)	INSULATION	
Electric	15	Molded	20
BURNERS	21	Blanket	24
FURNACES		PUMPS	
Gas or Oil-Fired	18	Base-Mounted	20
Unit Heaters		Pipe-Mounted	10
Gas or Electric	13	Sump and Well	10
Hot Water or Steam	20	Condensate	15
RADIANT HEATERS		RECIPROCATING ENGINES	20
Electric	10	STEAM TURBINES	30
Hot Water or Steam	25	ELECTRIC MOTORS	18
AIR TERMINALS		MOTOR STARTERS	17
Diffusers, Grills, and Registers	27	ELECTRIC TRANSFORMERS 30	
Induction and Fan-coil units	20	CONTROLS	
Air-Washers	17	Pneumatic	20
Duct Work	30	Electric, or Electronic	15

Illingworth-Kilgust Mechanical An EMCOR Company

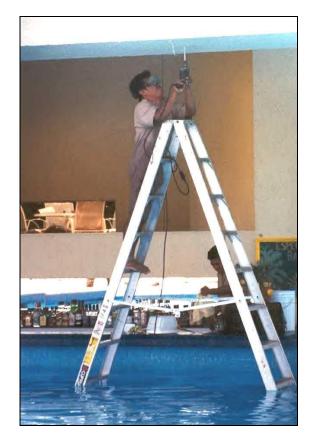
HVAC Components

Component failure rates will depend largely on the owner's proactive approach with planned maintenance versus breakdown repair only. A good planned maintenance program can add 20% or more life to existing equipment. No planned maintenance can deduct 20-30% from typical unit life expectancy.

HVAC Component Typical Life Expectancy	Typical Failure Rate Expectancy	
Compressors	Typically 5-15 year range for failures. Most manufacturers warranty 1-5 years only.	
Condenser Fan Motors	Starts after 3-5 years.	
Blower Motor	Rarely fail in the first 10 years.	
Blower Wheels	Rarely fail themselves; are typically replaced due to shaft or bearing failures.	
Contactors	Typical wear item. Replace every few years.	
Bearings	Typical wear item. Life span is 1-10 years.	
Relays	Typical wear item. Replace every few years.	
Thermostats	Low maintenance item. Failure rate is minimal. More subject to damage by occupant.	
Timers	Typical life span 5-10 years.	
Fan Blades	High wear item. Typically replaced with condenser fan motors after 3-5 years.	
Condensers	Normally last unit life except for severe hail damage.	
Evaporators	Normally last unit life unless filters are not changed regularly.	
Heat Exchangers	Failure typically starts at 10 years due to rust and cracks. Note: newer units have thinner metal.	
Gas Valves	Failures begin at 5-10 year range.	
Igniters	Typical wear item. Should be replaced every few years.	
Gas Regulators	Failures begin at 5-10 year range.	
Actuators	Failures begin at 5-10 year range.	
Circuit Boards	No-maintenance item. Failures are normally due to other component failures.	

Health & Safety Awareness

Safety Training:


Practice it because of things like this...

Safety Training (Cont.)

And this...

Safety Training (cont.)

Yes, and this...

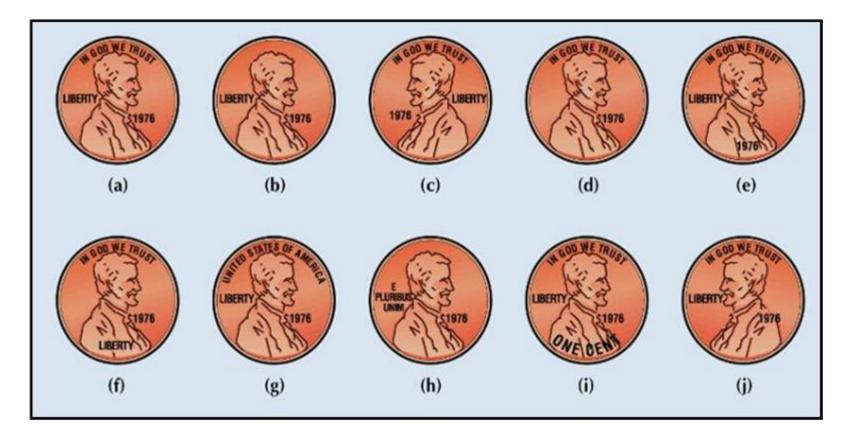
Equipment Location – Safe Building Access

"I am going to be working in the following areas- my PPE includes Safety Glasses, ear protection, gloves, and work boots"

- "Do I require any other items or is there clothing such as badge lanyard or jewelry that should not be worn?"
- "What procedures should I follow related to security, signing in and who to contact?"
- "Are any aspects of Health & Safety covered at that time?"

Home Safely...Hazard Identification

Rooftop Work


- Access Using Ladders, fixed, extension, how tall
- Hatches and Openings, Distance from roof edge
- Equipment Location (Roof or Mechanical Room)
- Surrounding Environment, noise, weather,
- Opening Units? De-energizing electrical

Inspecting Equipment Accurately is Very Important

Know what you're looking at!

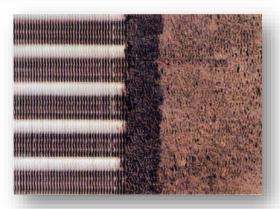
Working On Equipment – The Safety Factor

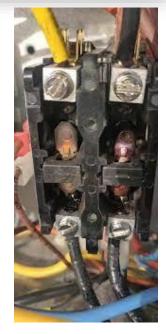
- Identifying equipment that may be difficult to access
- What obstacles could be out there?
 - Landscaping
 - Snow, ice
 - > Animals (ex: Snakes, Bees, Wasps, Insects etc.)
 - Skylights
 - Garbage or other debris
 - Height of first step
 - Properly secured to the building

HVAC Equipment – The Safety Factor

Safety issues: What to look for and why

- Roof access conditions
- Hard to get to access
- Poor lighting
- Skylights
- Overhead Obstacles
- Trip Hazards
- Walkways
- Wet slippery floors
- Hazardous Areas (chemicals present)
- Over Head Work (workers working above you)





Equipment Neglect – What to look for and what to do with it

- Dirty air filters
- Faulty drive belts
- Dirty motors
- Burnt contact points
- **Refrigerant leaks**
- Plugged drains
- Trash on roof
- Missing/loose panels

An EMCOR Company

Performance Impacts

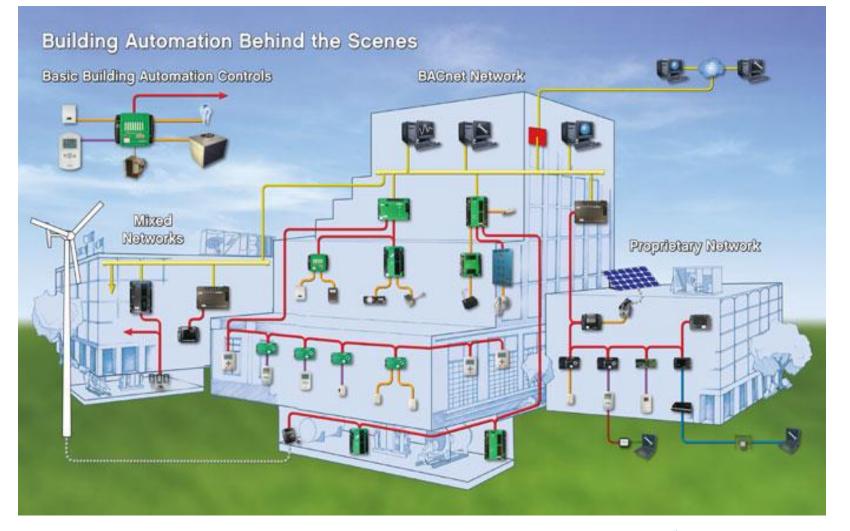
ASHRAE Journal

Changes in rooftop operation due to refrigerant leakage						
(% leakage)	% Change in Capacity	% Change in COP	Change in T _{sh} (F)	Change in T _{hg} (F)		
3.5	3.0	2.7	3.5	3.3		
7.0	3.8	2.8	7.0	6.1		
10.5	5.6	3.6	9.9	8.4		
14.0	8.0	4.6	11.1	10.0		
Changes in rooftop operation due to liquid line restriction						
(% ∆P)	% Change in Capacity	% Change in COP	Change in T_{sh} (F)	Change in T _{hg} (F)		
5	3.5	3.0	5.5	5.8		
10.0	5.2	3.7	8.7	8.8		
15.0	8.8	5.1	11.9	12.2		
20.0	17.2	8.7	16.0	16.6		
Changes in rooftop operation due to compressor valve leakage						
Fault Level (% ∆ η,)	% Change in Capacity	% Change in COP	Change in T _{sh} (F)	Change in T _{ng} (F)		
7	7.3	7.9	-3.6	0.2		
14	9.6	10.5	-4.8	0.0		
28	12.5	14.0	-7.2	0.1		
35	21.3	23.8	-11.8	0.6		
Changes in rooftop operation due to condenser fouling						
(% area block)	% Change in Capacity	% Change in COP	Change in T _{sh} (F)	Change in T _{hg} (F)		
14	3.1	4.3	0.8	2.2		
28	4.8	7.7	4.2	2.6		
42	7.4	12.2	8.0	3.1		
56	10.9	17.9	11.2	4.5		
Changes in rooftop operation due to evaporator fouling						
(%∆ airflow)	% Change in Capacity	% Change in COP	Change in T _{sh} (F)	Change in T _{hg} (F)		
12	6.7	6.0	2.1	1.5		
24	13.6	12.3	3.9	3.2		
36	19.4	17.4	5.5	5.1		

Illingworth-Kilgust Mechanical An EMCOR Company

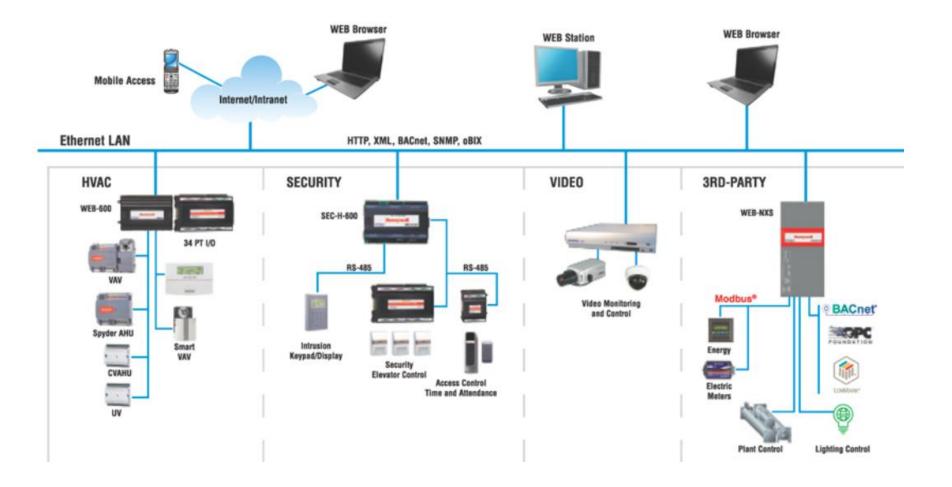
Table 4: Effect of degradation faults on a 3-ton (10.6 kW) rooftop unit with a fixed-orifice expansion device.

What is a Building Automation System (BAS)? Direct Digital Control (DDC)?

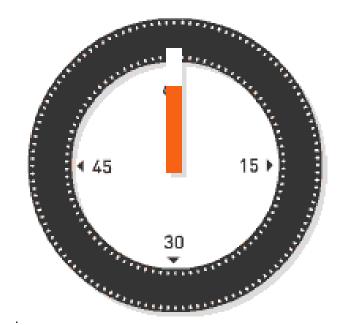

Building Automation System is the centralized control of a buildings heating, ventilation and air conditioning, lighting and other systems through a dedicated system.

Equipment needs a control system to regulate its operation to meet changing needs of indoor spaces.

A method of monitoring and controlling building systems performance by collecting, processing, and sending information using sensors, actuators, and microprocessors.



Building Automation


Building Automation Overview

Time for Questions?

Thank you for meeting us today!

