

Building Environment – Preparedness & Improvements

Introduction

William A. Freeman

- President at Safety/Environmental consulting firm of Environmental Management Consulting, Inc. (EMC).
- BS & MS in Occupational Safety from the University of Wisconsin-Whitewater.
- Certified Hazardous Materials Manger (CHMM)
- Certified Indoor Air Quality Professional (CIAQP)
- Served on the Board of Directors for the Wisconsin School Safety Coordinators Association (WSSCA) in the capacity of president and currently acts as an advisor to the board.

Served as a Board of Directors for the Wisconsin Association of School Business Officials (WASBO).

Introduction

Benjamin N. Patterson

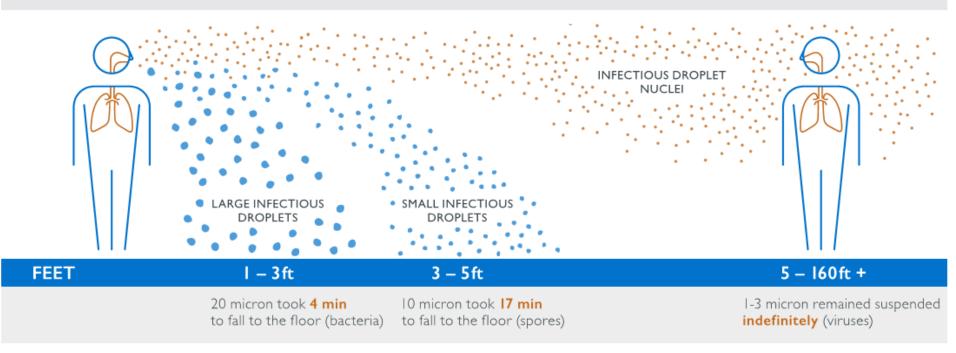
- Special Projects Manager at TOTAL Mechanical, Inc.
- Bachelor of Science in Architectural Engineering at the University of Milwaukee School of Engineering.
- Licensed Professional Engineer (PE) with the State of WI
- Has been directly involved in, or overseen, more than a hundred IAQ COVID response projects

Introduction – CDC & ASHRAE

CENTERS FOR DISEASE CONTROL AND PREVENTION

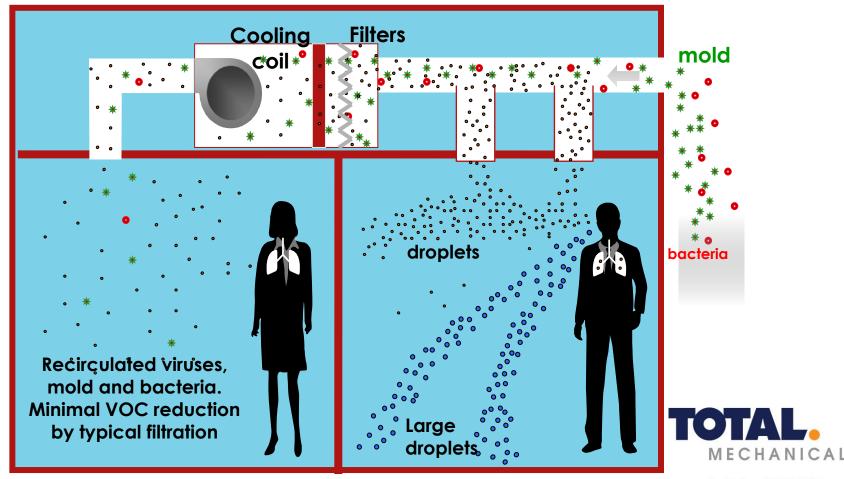
Centers for Disease Control & Prevention (CDC)

 US Federal Agency, under the Department of Health and Human Services, and is headquartered in Atlanta, Georgia.

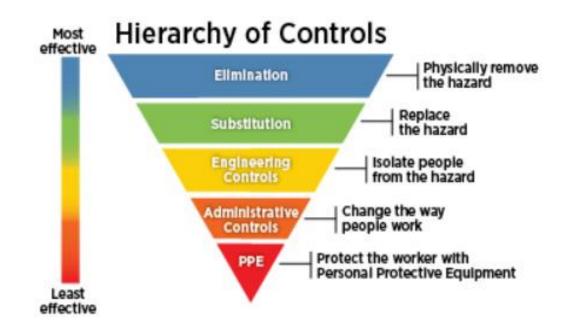

https://www.cdc.gov/coronavirus/2019ncov/community/ventilation.html

American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)

- Mission: "To serve humanity by advancing the arts and sciences of heating, ventilation, air conditioning, refrigeration and their allied fields."
- "State-of-the-art" design criteria
- Epidemic Task Force for Schools and Universities <u>www.ashrae.org/covid19</u>

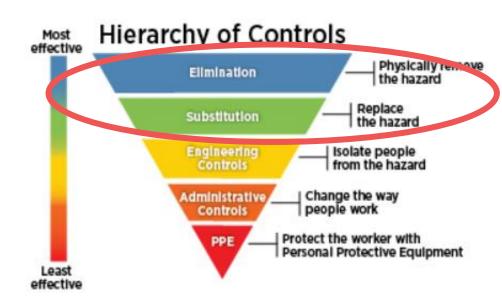

Aerosolized Risk [In Buildings]

J.W. Tang, Y. Li, I. Eames, P. K. S. Chan, G. L. Ridgway, Factors involved in the aerosol transmission of infection and control of ventilation in healthcare premises. Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital. Hong Kong; Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong; Department of Mechanical Engineering, University College London, London UK School of Public Health.



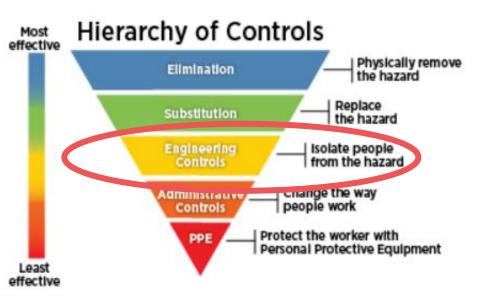
Aerosolized Risk [HVAC Systems]

OSHA's Hierarchy of Controls


Select the controls that are most feasible, effective, and permanent.

Elimination & Substitution

- Shelter at Home
- Virtual Only Schooling
- Close businesses
- Close borders



<u>Very effective but not feasible for a long-term solution.</u>

Engineering Controls

- Building / HVAC Design
- HVAC Retrofit
- Ventilation (#1 Cause of IAQ Issues)
 - Preventative Maintenance
 - Ductwork Cleaning
 - HVAC Unit Cleaning
 - Filtration
 - Air Change
 - Carbon Dioxide (CO₂)
 - Ultraviolet Light Vs. Ionization Technologies

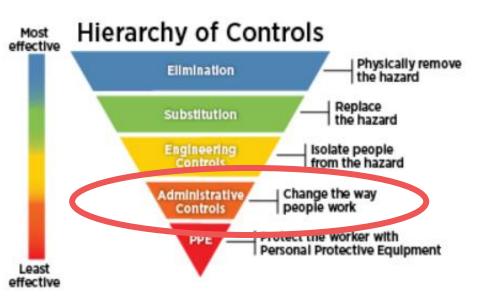
ASHRAE – Design Recommendations

General – Schools & Other Public Buildings

Temp. & Humidity

- Winter 72F & 40%-50% RH
- Summer 75F & 50%-60% RH
 - Less humid air viral droplets lose water content and become more aerosolized. This likely increases the rate of transmission.
- Ventilation Design Criteria/Guideline
 - Follow ASHRAE 62 for outside air requirements
 - During pandemic, disable any Demand Control Ventilation (DCV) and maximize outside air 24/7.
- Filtration Design Criteria/Guideline
 - Apply the highest Minimum Efficiency Reporting Value (MERV) for the HVAC units.
 - MERV 13 is recommended, if equipment can accommodate pressure drop.

ASHRAE – Design Recommendations Continued


Operation & Scheduling Guidelines during Pandemic

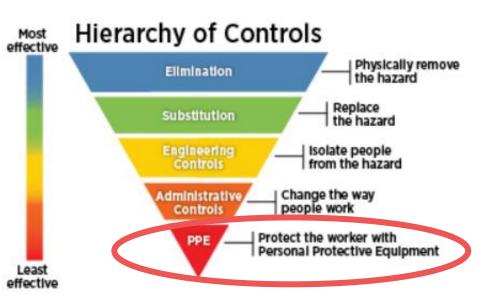
- Cooling & Heating Equipment
 - Change the start and end times to run at least 2 hrs before & after occupancy.
 - Consider running 24/7
- Exhaust Fans Turn on when DOAS is running
 - Only school days
 - Goal is to flush the building with OA and create slight positive pressure.
- Dedicated Outdoor Air Systems (DOAS)
 - Run units 2 hrs before & after occupancy.
 - New units "Purge/Flush" mode for operations to min. virus transmission.
- Energy Recovery Systems
 - Some systems allow for exhaust air transfer from the exhaust airstream to the supply airstream. Depending on system configuration, this may be cause for concern.
 - Discontinue use/forget everything you have learned about saving energy!

Administrative Controls

- IAQ Policies
- HVAC Policies
 - Ductwork Cleaning
- Cleaning Policies
- Social Distancing
- Contact Tracing
- Employee Awareness Training
- Real Time COVID-19 Testing of Students and Staff

Combination of Administration & Engineering Controls

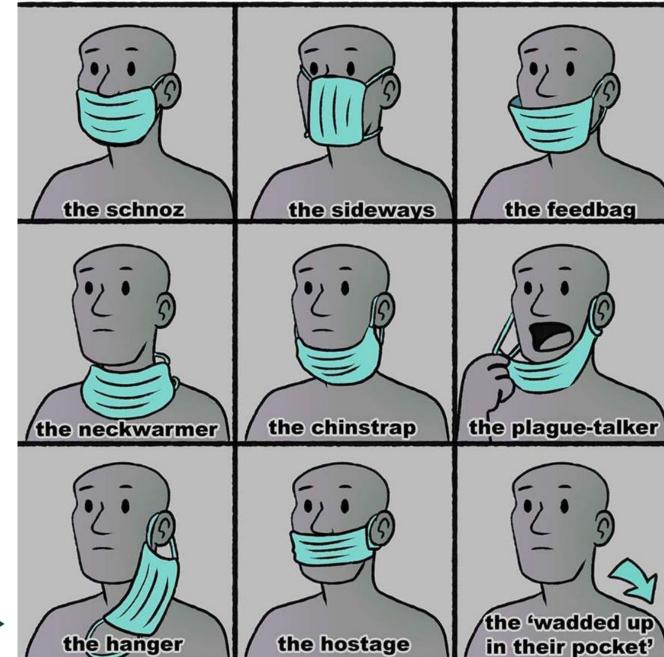
Reduce Direct Contact Risks


- Socially distance through setting up of A/B days, or A/B pods in school wings, screen & isolate infected people, etc.
- Add hand sanitizing stations to treat surface-to-hand transmission
- Clean common surfaces
 - Tables, doorknobs, light switches, handles, phones, keyboards, toilets, faucets, etc.
- Reduce contact through touchless devices

Personal Protective Equipment

- PPE Policies
- OSHA Regulations
 - Use of Face-coverings Vs. N95

Personal Protective Equipment


Face-covering Recommendation from CDC

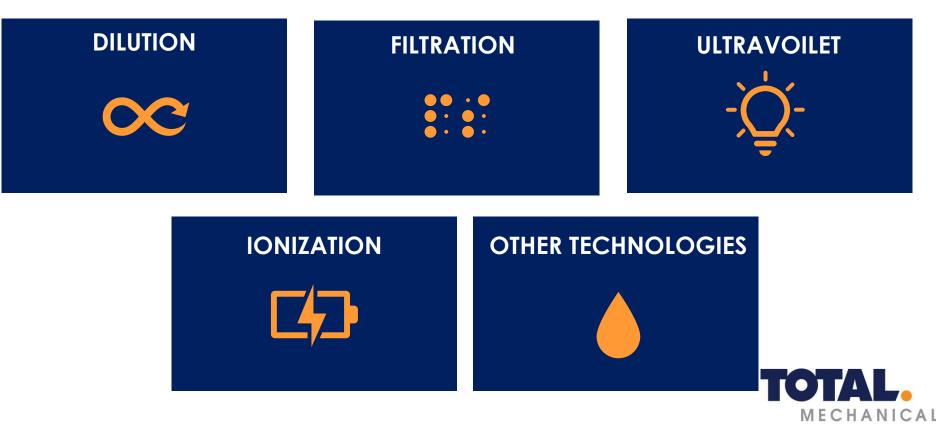
- General public wear cloth face-coverings
- Healthcare setting N95 and/or face-shield
- Currently, no specific guidance indicating that school employee are at higher risk than the general public.
- No OSHA Implications

Ineffective Face Mask Bingo @skidarstudios

in their pocket'

Personal Protective Equipment

N95 Respirator

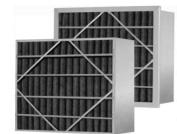

- Can be used for "voluntary use" per OSHA regs.
 - Provide employee with OSHA Appendix D in 1910.134
- Supply of N95 respirators remains low and nationwide shortages may become worse if used by the general public.
- Not proper fit on children and people with facial hair.
- If mandated by employer, OSHA requires:
 - Employee Training
 - Medical Questionnaire reviewed by a Health Care Professional
 - Annual Fit Testing

A Closer Look at HVAC Engineering Controls

Treat Your Air: Evidence Based Methodologies

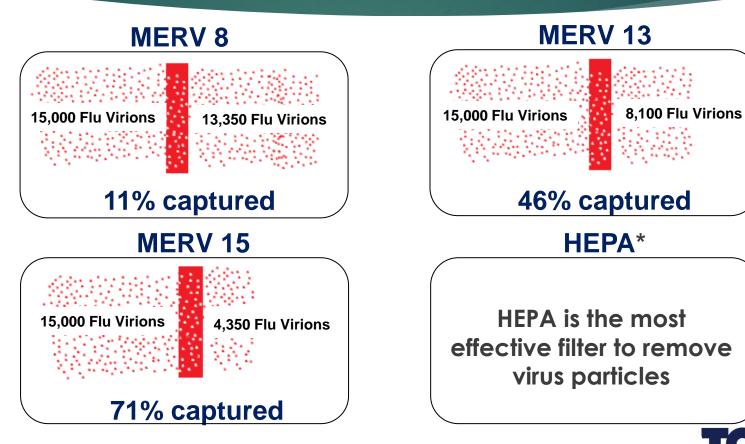
C Dilution

- Introduce additional clean air into your building so that the percentage of virus particles in your air (if a sick occupant is in the building) is decreased to reduce risk
- Seasonal impacts to your space (Winter/Summer)
- Utility cost impacts
- Maintenance cost impacts



Filtration

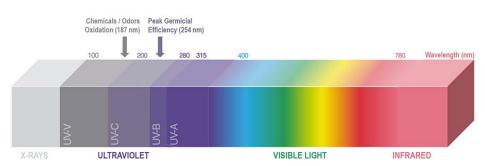
MERV Rating	Air Filter will trap Air Particles size .03 to 1.0 microns	Air Filter will trap Air Particles size 1.0 to 3.0 microns	Air Filter will trap Air Particles size 3 to 10 microns	Filter Type ~ Removes These Particles	
MERV 1	< 20%	< 20%	< 20%	Fiberglass & Aluminum Mesh	
MERV 2	< 20%	< 20%	< 20%	100 A	
MERV 3	< 20%	< 20%	< 20%	Pollen, Dust Mites, Spray	
MERV 4	< 20%	< 20%	< 20%	Paint, Carpet Fibres	
MERV 5	< 20%	< 20%	20% - 34%	Cheap Disposable Filters	
MERV 6	< 20%	< 20%	35% - 49%	1998)	
MERV 7	< 20%	< 20%	50% - 69%	Mold Spores, Cooking Dusts,	
MERV 8	<200	<20%	70% - 85%	Hair Spray, Furniture Polish	
MERV 9		Less than 50%	85% or Better	Better Home Box Filters	
MERV10	<2010	50% to 64%	85% or Better	1778) 1778)	
MERV 11	< 20%	65% - 79%	85% or Better	Lead Dust, Milled Flour, Auto	
MERV 12	< 20%	80% - 90%	90% or Better	Fumes, Welding Fumes	
MERV 13	Less than 75%	90% or Better	90% or Better	Superior Commercial Filters	
MERV 14	75% - 84%	90% or Better	90% or Better	(* *)	
MERV 15	85% - 94%	90% or Better	90% or Better	Bacteria, Smoke, Many	
MERV 16	95% or Better	90% or Better	90% or Better	Viruses	


- ► Increased maintenance & utility costs
- ▶ Increased risk to equipment wear & facility worker exposure

Filtration [Effect on Influenza A Virus]

Source: Modeling Immune Building Systems for Bioterrorism Defense; Kowalski, Bahnfleth, Musser, Journal of Architectural Engineering, June 2003, v9(2), pp222-227.

* HEPA was not part of the study above. It's a graphical representation of 99.97% efficiency HEPA filter (defined by DOE) with particulates in 0.3µm which is the toughest size to catch.


MECHANICAL

- UV lamps create high energy UV rays that scramble and destroy the viruses
 - UV-C band (at 254nm) are the most predominant used against bacteria & viruses

UV-C light sanitizes by permanently damaging the DNA of bacteria & viruses

- Ultra-Violet [Effectiveness]

Common Name	Pathogenic name	value for p	reduction		UVC-only Pathogen reduction/air pass	Pathogen reduction UVC + filtration	
		UVGI K m²/J	μw/cm²	MERV 8	MERV 10	URV 11 1000µJ/cm² Coil Cleaning	MERV 11 + URV 11
Pneumonia	Pseudomonus aeruginosa	0.5721	0.005721	14	15	99.96%	99.99%
TB / Tuberculosis	Mycobacterium tuberculosis	0.4721	0.004721	19	21	99. 85 %	99.99%
Corona Virus	Caronavirus	0.3770	0.00377	18	20	99.45%	99.99%
Legionella	Legionella pneumophila	0.1930	0.0019298	15	16	93.00%	99.79%
Acinetobactor	Acinetobacter baumannii	0.1280	0.00128	42	44	82. 86 %	99.79%
Flu	Influenza A & B	0.1190	0.00119	30	31	80. 60 %	99.47%
Staph / MRSA	Staphylococcus aureus	0.1130	0.00113	28	30	78. 93 %	99.00%
Avian Flu	Avian Influenza Virus	0.1060	0.00106	12	13	76.79%	97.00%
Measles	Measles	0.1051	0.001051	10	9	76.50%	97.00%
Chicken Pox	Varicella Zoster	0.105	0.00105	10	9	76.47%	97.00%
Strep	Streptococcus pyogenes	0.8110	0.00811	29	31	99.99%	99.00%

Airborne Pathogen Reduction Rates at specific MERV filter + UVC Fixture ratings

- Ultra-Violet [Air Handling Units]

UVC Dose = Intensity x Exposure (dwell) Time UVC energy is cumulative

Disinfection is accomplished by exposing a pathogen to:

<u>High-intensity</u> UVC energy for a <u>short time period</u>, i.e 2000 μW for only 1 second <u>Low-intensity</u> UVC energy for <u>long time period</u>, i.e 20 μW for 100 seconds

NOTE: A 60W lamp is rated at 2047µW @ 7", or 200µW @ 38"

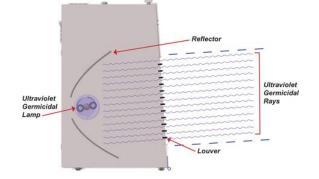
Air Disinfection vs. Surface Disinfection

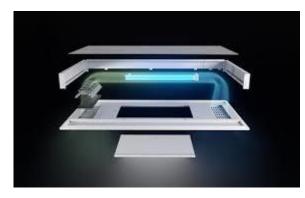
Air moves through AHU at 500 f/m (@ 40° F)

1/2 second moving air exposure

A high-intensity dose of UVC is required to achieve the desired level of disinfection. Therefore must generate 4000μ to achieve 2000μ intensity in $\frac{1}{2}$ sec dwell time. Contaminated cooling coil are stationary, and therefore receive

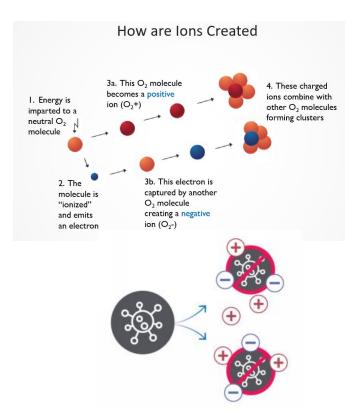
86,400 second surface exposure / 24 hours

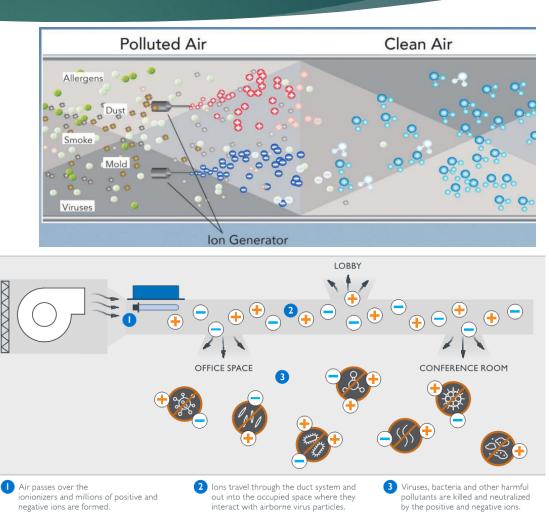

A low-intensity dose of UVC energy is all that is required!



- Ultra-Violet [Considerations]

- Options for in room and in unit technologies
- Equipment protection from mold and mildew
- Quick kill of pathogens that are exposed to the light
- Long track record for medical use in virus & bacteria control


E


- Installation costs
- Equipment, electrical, install, reflective linings, safeties
- Increased utility costs
- Increased bulb replacement costs
- UV Lights will continue to glow and be "on" after effectiveness degrades (Replace 1-2 years per MFG.)
- Safety risks
- 12-24 week lead times

Ionization

 lons attach to viruses to deactivate them, settle them, and agglomerate them

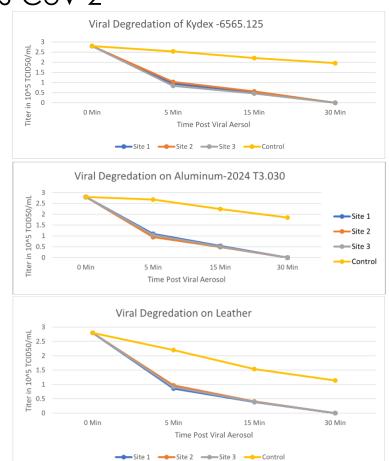
Ionization [Safety Considerations]

- Verify UL ratings for "Ozone Free" generation
 - (UL 2998) Required under ASHRAE 62.1-2019 Section 5.7.1 for air purifiers applying to all UV, Ionizers, etc.

CHEMICAL	FORMULA	Electron Volt	
Xylene*	C ₈ H ₁₀	7.89	
Styrene*	C ₈ H ₈	8.46	
Methyl Ethyl Ketone*	C ₃ H ₈ O	9.52	
Ammonia*	NH ₃	10.07	
Acetaldehyde*	СН ₃ СНО	10.23	
Ethyl Alcohol*	C ₂ H ₅ OH	10.48	
Formaldehyde*	CH ₂ O	10.88	NPBI
Oxygen	0 ₂	12.07	
Corona tubes require >12.07 to break down the dielectric		DIELECTRIC/CORONA DISCHARGE TUBE > 12.07eV	

* Typical contaminants of concern as contained within ASHRAE 62.1

Electron Volt Energy greater than 12Ev, creates ozone (O₃)


Building Integrity

MECHANICAL

Ionization [Effectiveness]

Surface sample testing against SARS-CoV-2

- 84.2% in 10 minutes
- 92.6% in 15 minutes
- 99.4% in 30 minutes
- Testing against other pathogens
 - E.Coli 15 minutes 99.68%
 - MRSA 30 minutes 96.24%
 - C. Diff 30 minutes 86.87%
 - ▶ TB 60 minutes 69.01%

Ionization [Options]

Ionization [Considerations]

- Ions attach to viruses to deactivate them
- Options for in room and in unit technologies
- Tackles odors
- 4-6 week lead times

E

- Small increase on utility costs
- Time duration to kill pathogens
- Moderate installation costs
- Potential small maintenance costs
- Make sure your ionizers are UL listed to be free of ozone generation

Ionization vs. - O-UV Costs 1,500 CFM Unit Ventilator

[] Ionization

- Install price \$925
 - Based on a NPBI unit with self-cleaning arms
- Utility cost \$4.29/year
 - Based on 24/7 operation, 12 cents per kWh, no demand charge
- Maintenance \$0
 - Based on a self-cleaning ionization unit.
- Replacement \$92.5/year
 - Based on a linear plan to replace the unit at it's 10-year life expectancy
- Simple Ten Year Life Cycle Cost:
 - \$1,892.90

-Q- Ultra-Violet Light

*Not available to retrofit into unit vents, pricing reflective of portable non-HEPA circulation unit

- Install price \$1,700
- Utility cost \$283.28/year
 - Based on 24/7 operation, 12 cents per kWh, no demand charge
- Maintenance \$324/year
 - Based quarterly filter replacement & yearly bulb replacement (labor by owner)
- Replacement \$170/year
 - Based on a linear plan to replace the unit at a 10-year life expectancy
- Simple Ten Year Life Cycle Cost:
 - \$9,472.80

*Analysis is done in current dollars, no projection for inflation

Ionization vs. - O-UV Costs Portable HEPA/UV/Ionizing Unit

- Purchase price-\$4,071
 - Based on a NPBI unit with self-cleaning arms
- Utility cost \$986.45/year
 - Based on 24/7 operation, 12 cents per kWh, no demand charge
- Maintenance \$423/year
 - Based on quarterly pre-filter, yearly HEPA filter, and yearly UV bulb replacement (labor by owner)
- Replacement \$264/year
 - Based on a linear plan to replace the unit at it's 15-year life expectancy
- Simple Ten Year Life Cycle Cost:
 - \$20,805.50

*Analysis is done in current dollars, no projection for inflation

Indoor 5,000 CFM AHU

lonization

- Install price \$1,800
 - Based on a NPBI unit with self-cleaning arms
- Utility cost \$10.34/year
 - Based on 24/7 operation, 12 cents per kWh, no demand charge
- Maintenance \$0
 - Based on a self-cleaning ionization unit.
- Replacement \$180/year
 - Based on a linear plan to replace the unit at it's 10-year life expectancy
- Simple Ten Year Life Cycle Cost:
 - \$3,703.40

💇 Ultra-Violet Light

- Install price \$8,400
- Utility cost \$512.46/year
 - Based on 24/7 operation, 12 cents per kWh, no demand charge
- Maintenance \$494/year
 - Based on bi-yearly bulb replacement by owner (no labor costs included).
- Replacement \$560/year
 - Based on a linear plan to replace the unit at it's 15-year life expectancy
- Simple Ten Year Life Cycle Cost:
 - \$24,064.60

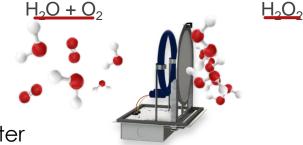
*Analysis is done in current dollars, no projection for inflation

Indoor 15,000 CFM AHU

Ionization

- Install price \$5,300
 - Based on a NPBI unit with self-cleaning distribution bar
- Utility cost \$16.40/year
 - Based on 24/7 operation, 12 cents per kWh, no demand charge
- Maintenance \$0
 - Based on a self-cleaning ionization unit.
- Replacement \$530/year
 - Based on a linear plan to replace the unit at it's 10-year life expectancy
- Simple Ten Year Life Cycle Cost:
 - \$10,764.00

Q- Ultra-Violet Light


- Install price \$10,600
- Utility cost \$630.72/year
 - Based on 24/7 operation, 12 cents per kWh, no demand charge
- Maintenance \$519/year
 - Based on bi-yearly bulb replacement by owner (no labor costs included).
- Replacement \$707/year
 - Based on a linear plan to replace the unit at it's 15-year life expectancy
- Simple Ten Year Life Cycle Cost:
 - \$29,167.20

*Analysis is done in current dollars, no projection for inflation

- Dry Hydrogen Peroxide (Synexis)
 - Cleans air & surfaces
 - Newer technology
 - Requires weekly recharge, quarterly clean, filter changes, and UV bulbs

- Heated Filters (IVP)
- Far UV (222nm)

Summary

Holistic Approach to IAQ

- Complete what is feasible in a timely manner
 - You can't complete everything overnight
- Develop a short and long term IAQ Plan
- Dilution/Filtration/UV Light/Ionization are one piece of the puzzle
 - Done in cooperation with Administrative and Engineering controls as well as PPE to reduce overall viral load long after a pandemic

Measuring Success

- IAQ assessments prior to and after the installation of engineering controls
 - LEEDS-CO, CO2, PM10, TVOC's, Formaldehyde
 - Surface/Air sampling for SARS-CoV-2 (Covid-19)
 - Qualitative (presence/Absence)

THANK YOU!

